
\$30 ELSEVIER

Contents lists available at ScienceDirect

Carbohydrate Polymers

journal homepage: www.elsevier.com/locate/carbpol

 MS^n of the six isomers of $(GlcN)_2(GlcNAc)_2$ aminoglucan tetrasaccharides (diacetylchitotetraoses): Rules of fragmentation for the sodiated molecules and application to sequence analysis of hetero-chitooligosaccharides

Balakumar Vijayakrishnan^a, Arisara Issaree^a, Yuri E. Corilo^b, Christina Ramires Ferreira^b, Marcos N. Eberlin^b, Martin G. Peter^{a,b,*}

- a Universität Potsdam Institut für Chemie Karl-Liehknecht-Str. 24-25. D-14476 Potsdam Germany
- b ThoMSon Mass Spectrometry Laboratory, Institute of Chemistry, University of Campinas UNICAMP, Campinas, SP 13083-970, Brazil

ARTICLE INFO

Article history: Received 9 October 2009 Received in revised form 25 March 2010 Accepted 22 April 2010 Available online 29 April 2010

Keywords: Chitosan Fragmentation Oligosaccharides Sequence analysis Tandem mass spectrometry

ABSTRACT

The six possible isomers of di-*N*-acetylchitotetraoses [**AADD**, **ADDA**, **DADA**, **DAAD**, and **DDAA**, where **D** stands for 2-amino-2-deoxy- β -D-glucose (GlcN) and **A** for 2-acetamido-2-deoxy- β -D-glucose (GlcNAc)] were analyzed by ESI(+)-MSⁿ. Collision induced dissociation via MSⁿ experiments were performed for the sodiated molecules of m/z 769 [M+Na]⁺ for each isomer, and fragments were generated mainly by glycosidic bond and cross-ring cleavages. Rules of fragmentation were then established. A reducing end **D** residue yields the $^{0.2}$ A₄ cross-ring [M-59+Na]⁺ fragment of m/z 710 as the most abundant, whereas isomers containing a reducing end **A** prefer to lose water to form the [M-18+Na]⁺ ions of m/z 751, as well as abundant $^{0.2}$ A₄ cross-ring [M-101+Na]⁺ fragments of m/z 668 and B₃ [M-221+Na]⁺ ions of m/z 548. MS³ of C- and Y-type ions shows analogous fragmentation behaviour that allows identification of the reducing end next-neighbour residue. Due to gas-phase anchimeric assistance, B-type cleavage between the glycosidic oxygen and the anomeric carbon atom is favoured when the glycon is an **A** residue. Relative ion abundances are generally in the order B \gg C > Y, but may vary depending on the next neighbour towards the non-reducing end. These fragmentation rules were used for partial sequence analysis of hetero-chitooligosaccharides of the composition **D**₂**A**₃, **D**₃**A**₃, **D**₂**A**₄, **D**₄**A**₃, and **D**₃**A**₄.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Oligosaccharides of β -1,4 linked D-glucosamine (abbreviated here as **D**) and/or N-acetyl-D-glucosamine (**A**), also named chitooligosaccharides (CHOs), belong to the sub-class of aminoglucans (Peter, 2002a, 2002b). They are structurally related to lipochitooligosaccharides (LCO's), which contain basically a backbone of N-acyl-**D**(**A**) $_n$ (n=3-6) where the **D** residue is nearly always located at the non-reducing end and N-acylated with a long-chain fatty acid (for a review, see Spaink, 2000). Similar to LCO's, which induce nodulation in legumes (Mathesius, 2003; Price, 1999; Spaink, 2000), CHOs are biological signaling molecules with a variety of remarkable activities, being involved in pattern formation during embryonic development in vertebrates (Bakkers et al., 1997; Semino & Allende, 2000) and elicitation of phytoalexins in plants (dos Santos, El Gueddari, Trombotto, & Moerschbacher,

E-mail address: Martin.Peter@uni-potsdam.de (M.G. Peter).

2008; Vander, Vårum, Domard, El Gueddari, & Moerschbacher, 1998). Other biological effects of CHOs, such as immunostimulant, anticancer, antimicrobial and antioxidant activities, have been described (Kim & Rajapakse, 2005) and some CHOs are under development for pharmaceutical applications (Einarsson, Gislason, Peter, & Bahrke, 2003). Within a research program on protein-ligand interactions of chitinolytic enzymes and chitolectins (Bahrke, 2007; Cederkvist et al., 2006; Germer, Muegge, Peter, Rottmann, & Kleinpeter, 2003; Houston et al., 2002; Vaaje-Kolstad, Houston, et al., 2004; Vaaje-Kolstad, Vasella, et al., 2004; van Aalten et al., 2001), we are interested in rapid and sensitive methods for structure determination of CHOs. NMR spectroscopy requires relatively large amounts of sample and yields limited information because of an insufficient resolution for higher CHOs (Vårum, Anthonsen, Grasdalen, & Smidsrød, 1991a, 1991b), thus leaving mass spectrometry (MS) as the method of choice (Peter & Eberlin, in press).

CHOs composed exclusively of either **D** or **A** are named homo-CHOs, whereas those containing both monosaccharide units are termed hetero-CHOs. Analysis of homo-CHOs by MS is rather straightforward. As there are no isomers (except conformers and reducing end anomeric stereoisomers), their structures are easily

^{*} Corresponding author at: Universität Potsdam, Institut für Chemie, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam, Germany. Tel.: +49 331 9775424; fax: +49 331 6014757.

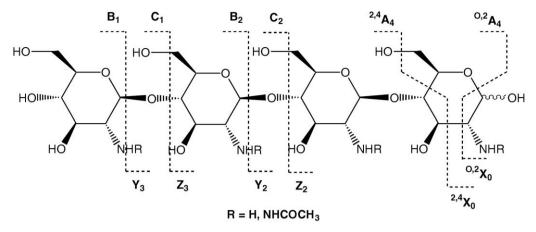


Fig. 1. Nomenclature for the assignment of fragment ions of AGO tetrasaccharides according to Domon and Costello (1988).

deduced from their molecular mass which are a multiple of the number of **D** or **A** residues plus water, i.e. $(\mathbf{D}_n + \mathbf{H}_2\mathbf{O})$ or $(\mathbf{A}_n + \mathbf{H}_2\mathbf{O})$, respectively.

The molecular mass of a hetero-CHO reveals, however, only its DP and F_A , but is silent about structure, since any hetero CHO of the composition $\mathbf{D}_n \mathbf{A}_m$ can exist as a number of constitutional isomers only differing in the position of the \mathbf{D} and \mathbf{A} residues in the oligosaccharide chain. Characterization of hetero-CHOs is therefore a formidable structural challenge, in particular when a sample is available only as an intractable mixture of isomers. For such mixtures, the task must be handled by fragmentation of molecules with sequential MS (MSⁿ). MSⁿ has been shown to be a powerful technique for structural elucidation, well established and widely applied in glycobiology (Budnik, Lee, & Steen, 2006; Fernandez, 2007; Wolff, Amster, Chi, & Linhardt, 2007). Product ions generated by MSⁿ of oligosaccharides are assigned according to the nomenclature proposed by Domon and Costello (1988), as Fig. 1 illustrates for CHO tetrasaccharides.

Cross-ring and glycosidic bond fragmentation of protonated molecules have been observed in FAB(+)-MS and FAB(-)-MS of \mathbf{D}_n (n=3–9) and \mathbf{A}_m (m=3–6) (Bosso & Domard, 1992) and in (+)-FAB-MS² of \mathbf{A}_m (m=1–6) (Singh, Gallagher, Derrick, & Crout, 1995). MALDI(+)-TOF MS of sodiated \mathbf{D}_n (n=2–12) molecules show weak $^{0,2}\mathbf{A}_n$ fragments of each oligomer (Trombotto, Ladaviere, Delolme, & Domard, 2008). In ESI(+)-MS, B- and C-type ions of protonated molecules of CHOs are the most abundant whereas sodiated molecules dissociate also by $^{0,2}\mathbf{A}$ - and $^{2,4}\mathbf{A}$ -type cleavages, as shown by CID, SORI CID, EID, and ECD MS² of \mathbf{D}_7 and \mathbf{A}_5 (Budnik, Haselmann, Elkin, Gorbach, & Zubarev, 2003). MSn studies

of CHOs have been summarized in a recent review (Peter & Eberlin, in press).

MSⁿ sequence analysis of hetero-CHOs is described in only few publications. Reductive amination with an aromatic amine, such as 2-aminoacridone or 3-(acetylamino)-6-aminoacridine, introduces a tag at the reducing-end. Tagged, sodiated Y-type fragments predominate, as has been shown in sequence analysis of complex mixtures of hetero-CHOs by MALDI-TOF PSD MS (Bahrke et al., 2002), linear ion trap MALDI MS² and MS³ (Haebel, Bahrke, & Peter, 2007), and by MALDI-TOF MS² (Cederkvist, Parmer, Varum, Eijsink, & Sørlie, 2008). Due to the fatty acid residue located at the non-reducing end sugar residue, a tag is inherently present in LCO's, Nevertheless, structure elucidation of LCO's by MS can be rather tricky, due to various additional substituents, including glycosylation of the CHO backbone (for an excellent, timeless review, see Van der Drift, Olsthoorn, Brull, Blok-Tip, & Thomas-Oates, 1998).

Chemical derivatization cannot be used to identify a CHO that is non-covalently bound to a protein and in equilibrium with a mixture of CHOs. Sequence analysis must then rely on gas phase MS fragmentation of the native (underivatized) hetero-CHOs. This task has been achieved so far in only one case by top-down nano-ESI-MS² of protonated molecules of $\mathbf{D}_2\mathbf{A}_3$ bound to a chitinase (Cederkvist et al., 2006).

The aim of the work reported herein was to establish general rules for the CID chemistry of underivatized hetero-CHOs during ESI(+)-MSⁿ. Sodiated molecules of the six constitutional isomers of $\mathbf{D_2A_2}$ (Fig. 2) were therefore investigated systematically by ESI(+)-MS². The fragmentation rules were then applied to partial sequence analysis of five hetero-CHOs of unknown isomer composition.

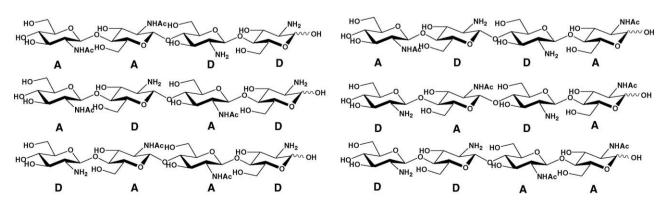


Fig. 2. Structures of the six constitutional isomers of D_2A_2 .

2. Materials and methods

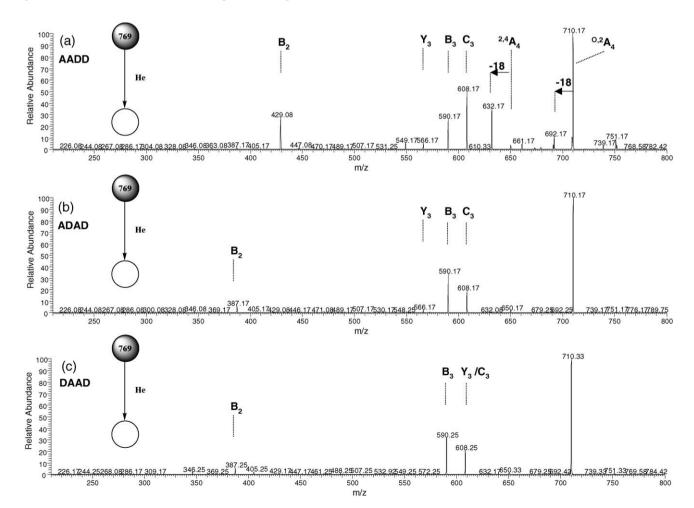
2.1. Samples

The AGO tetramers **AADD**, **ADDA**, **ADAD**, **DADA**, **DAAD**, and **DDAA** were synthesized as described elsewhere (Issaree, 2008; Vijayakrishnan, 2008). Solvents and chemicals used for sample preparation were of highest purity, as available from local suppliers.

2.2. Mass spectrometry

Samples of synthetic CHO tetramers and hetero-chitooligosaccharides were dissolved in methanol/water (1:1 or 1:2) to give concentrations of ca. 0.1 mg mL⁻¹. Solutions were spiked with ca. 0.1% NaCl for favoured monitoring of sodiated molecules and loaded into 96-well plates (total volume of 100 µL in each well). The LTQ FTMS ultra, a hybrid mass spectrometer (Thermo Scientific, Waltham, MA, USA) equipped with a Triversa NanoMate 100 (Advion BioSciences, Ithaca, NY, USA) for chip-based nano-ESI MS (Zhang, Van Pelt, & Henion, 2003) was used for the experiments. Only the linear quadrupole ion trap mass analyzer was used for the experiments, since there was no need of high accuracy m/z measurements. General conditions were: pressure of 20 mbar and an electrospray voltage of ca. 1.5 kV. All MSⁿ experiments were performed and analyzed in the linear ion trap mass analyser by varying the collision-induced dissociation (CID) after the m/z of the interest had been isolated. Helium was used as the collision gas, collision energies (CE) were between 10 and 30 eV. Spectra were processed

with the Xcalibur Qual Browser software, Version 2.0.2.0 (Thermo Electron Corporation, U.S.A., 1998–2006).


3. Results and discussion

3.1. General considerations

Cross-ring $^{0,2}A_4$ and $^{2,4}A_4$ fragments are expected as $[M-59+Na]^+$ and $[M-119+Na]^+$ for a reducing end \mathbf{D} and as $[M-101+Na]^+$ and $[M-161+Na]^+$ for a reducing end \mathbf{A} residue, respectively. Cleavage of glycosidic bonds of the six isomeric tetrasaccharides gives series of two trisaccharide fragments of the \mathbf{DA}_2 or $\mathbf{D}_2\mathbf{A}$ compositions, three disaccharide, i.e. \mathbf{D}_2 , (\mathbf{DA}) , or \mathbf{A}_2 , and two monosaccharide fragments, i.e. \mathbf{D} or \mathbf{A} , respectively. The \mathbf{C}_3 - and \mathbf{Y}_3 -type ions are of the same $\mathbf{D}_2\mathbf{A}$ isobaric composition for \mathbf{ADDA} and \mathbf{DA}_2 for \mathbf{DAAD} , but they differ for the other four isomers, i.e. \mathbf{C}_3 of \mathbf{AADD} and \mathbf{ADAD} has the composition \mathbf{DA}_2 , whereas \mathbf{DDAA} and \mathbf{DADA} give $\mathbf{D}_2\mathbf{A}$. The corresponding Y-type ions will appear as matching peaks with an increment of ± 42 \mathbf{Da} .

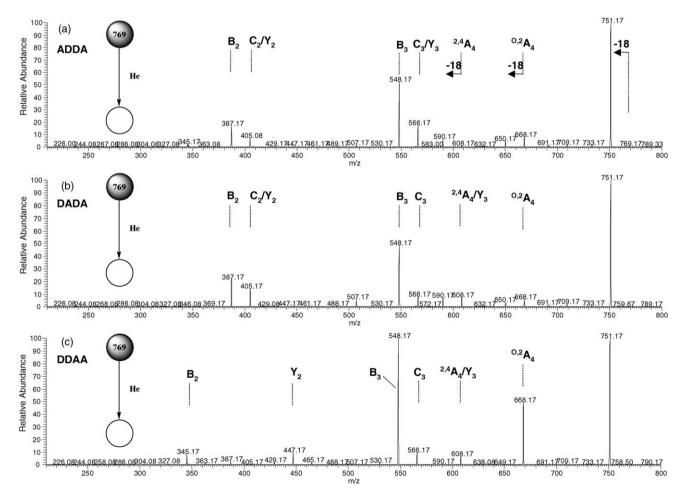
Assignments of peaks can be ambiguous because several possibilities generating isobaric ions (Table 1):

- (1) elimination of acetamide and ^{0,2}A-type cross-ring fragmentation of a reducing end **D** residue (-59 Da)
- (2) Y-type loss of a non-reducing end neutral **D** residue and ^{2,4}A₄ cross-ring fragments of a reducing end **A** residue (–161 Da),
- (3) B- and Z-type ions of the same composition $\mathbf{D}_n \mathbf{A}_m$ -H₂O,
- (4) C- and Y-type ions of the same composition $\mathbf{D}_n \mathbf{A}_m$,

Fig. 3. MS² of the ion of m/z 769 [M+Na]⁺ for (a) **AADD** (CE 14), (b) **ADAD** (CE 30) and (c) **DAAD** (CE 15).

Table 1Mass reductions (in Da) calculated for fragmentation processes.

Fragmentation	^{0,2} A ₄	$^{2,4}X_4$	0,2 X ₄	B_1	Y ₁	C ₁	Z_1	^{2,4} A ₄
D A	-59 -101	-60 -60	-120 -120	-161 -203	-179 -221	-179 -221	-161 -203	-119 -161
Elimination	NH ₃		H ₂ O	H ₂ CO		H_2C_2O		CH ₃ CONH ₂
	-17		-18	_	30	-42		-59


- (5) the $^{2.4}X_0$ fragment of a reducing end **A** residue is isobaric with the B₁ ion of a non-reducing end **D** residue (m/z 184),
- (6) loss of ketene ($-42 \, \text{Da}$) may suggest a "false" **D** residue.

3.2. MS² of sodiated molecules of m/z 769 [M+Na]⁺

MS² of the [M+Na]⁺ ion of m/z 769 of the tetrasaccharides **AADD**, **ADAD**, and **DAAD** show the base [M-59+Na]⁺ ion of m/z 710 that accounts for $^{0.2}A_4$ cross-ring fragmentation of the reducing end **D** (Fig. 3). $^{2.4}A_4$ cross-ring fragments are observed as trace [M-119+Na]⁺ ions of m/z 650 (Fig. 3). Ions of m/z 608, accounting for loss of a **D** are C₃ ions of the composition **DA**₂ from **AADD** and **ADAD** (Fig. 3a, b), and isobaric C₃ and Y₃ ions from **DAAD** (Fig. 3c). Y₃ ions of m/z 566 and **D**₂**A** composition are detected with low abundance in the MS² of **AADD** and **ADAD**. B₃ fragment ions of m/z 590 and B₂ ions of m/z 429 and 387, respectively, are also detected. The Z₃ ion of both **AADD** and **ADAD** expected to have the same m/z 548 value, is virtually absent, indicating that Z-type fragmentation is insignificant.

MS² of tetramers **ADDA**, **DADA**, and **DDAA** show loss of water as leading to the main $[M-18+Na]^+$ fragment of m/z 751 (Fig. 4). O.2 A₄ cross-ring $[M-101+Na]^+$ fragments of m/z 668 are of low abundance for **ADDA** and **DADA** (Fig. 4a, b) but quite significant for **DDAA** (Fig. 4c). The minor $[M-161+Na]^+$ ions of m/z 608 are isobaric $^{2.4}$ A₄ cross-ring fragments of the reducing end **A**, and/or Y type ions formed by loss of a non-reducing end **D** residue of **DADA** and **DDAA**, respectively. The MS² data also show low abundant ions of m/z 590, barely detectable for **DDAA**, corresponding to $[^{2.4}$ A₄ $-18+Na]^+$ for all three isomers, but also for $[Z_3+Na]^+$ for **DADA** and **DDAA**, respectively. Otherwise, B₃ ions of m/z 548 of the **D**₂**A** composition are very abundant, appearing even as the base ion for **DDAA**. The ions of m/z 405 are assigned to the isobaric C₂ and Y₂ ions of **ADDA** and **DADA**, where the B₂ ion of m/z 387 is also detected. MS² of **DDAA** gives the Y₂ ion of m/z 447 and the B₂ ion of m/z 345.

X-type ions formed by cross-ring fragmentation of the reducing end sugar are expected to be detected in the low m/z range $(m/z \le 184)$ with low abundance, if at all, and are not considered. Loss of acetamide is insignificant, since the $[M-59+Na]^+$ ion of m/z

Fig. 4. MS² of the ion of m/z 769 [M+Na]⁺ for (a) **ADDA** (CE 13), (b) **DADA** (CE 15), and (c) **DDAA** (CE 15).

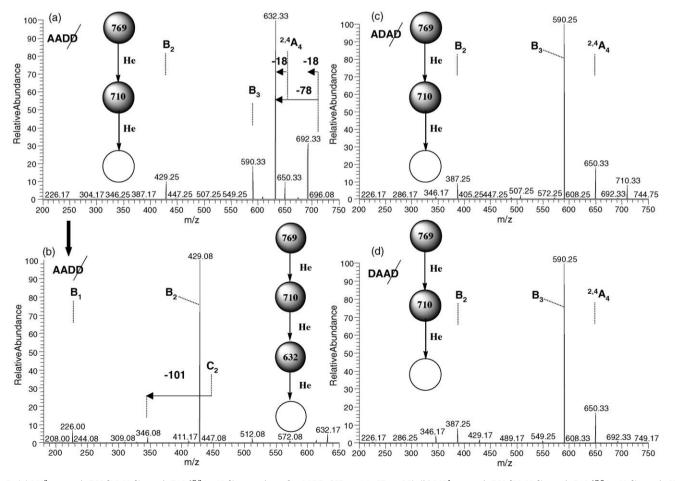
710 is absent in MS² of **ADDA**, **DADA**, and **DDAA**. For **AADD**, the trace $[M-161, -59+Na]^+$ ion of m/z 549 indicates the $^{0,2}A_3$ crossring fragment, rather than loss a **D** and of acetamide. The m/z 549 ion is virtually absent in MS² of **ADAD**, and **DAAD**.

Multiphoton dissociation (IR-MPD) and electron-capture dissociation (ECD) of the sodiated molecules of **ADDA**, **DAAD**, and **DDAA** reveal analogous patterns of cross-ring and glycosidic bond cleavages, with more abundant fragment ions in the lower m/z range (Fig. S1). The diagnostic value of the ions of m/z < 280 is questionable, however, due to isobaric fragment ions which cannot be identified by MSⁿ (Fig. S2).

3.3. MS^n of cross-ring fragments of m/z 710 [$^{0,2}A_4+Na$] $^+$ of reducing end **D** tetrasaccharides

The MS³ scan m/z 769 \rightarrow m/z 710 $[^{0.2}A_4+Na]^+ \rightarrow$ products for **AADD** shows a major fragment of m/z 632 $[^{0.2}A_4-78+Na]^+$ due to loss of water and two molecules of formaldehyde (Fig. 5a). The B₃ and B₂ ions of m/z 590 and 429, respectively, are also detected. The MS⁴ scan m/z 769 \rightarrow m/z 710 \rightarrow m/z 632 \rightarrow products gives mainly the B₂ ion as well as a weak C₂ ion of m/z 447, the corresponding $^{0.2}A_2$ cross-ring fragment of m/z 346 and the B₁ ion of m/z 226 (Fig. 5b). Fig. S3 summarizes the fragmentation pattern of sodiated **AADD**.

The MS³ scan m/z 769 \rightarrow m/z 710 [O.2 A₄+Na]⁺ \rightarrow products for **ADAD** and **DAAD** reveals a different fragmentation pattern. The most abundant fragment is that of m/z 590 [B₃+Na]⁺ (Fig. 5c, d). Other abundant fragment ions account for the loss of 60 Da (m/z


650), equivalent to two molecules of formaldehyde, and for the $[B_2+Na]^+$ ion of m/z 387. Thus, it appears that MS³ of $^{O,2}A_4$ ions of sodiated **AADD**, **ADAD**, and **DAAD** yields preferentially the B_3 ion when the next glycon neighbour is **A**, but loss of water and formaldehyde is favoured when the next neighbour is **D**.

The observation of abundant B_3 ions of the composition \mathbf{DA}_2 in the MS³ of m/z 710 of sodiated \mathbf{AADD} , \mathbf{ADAD} , and \mathbf{DAAD} as well as the very low abundance or even absence of ions of m/z 549 supports the conclusion that loss of a 59 Da species from $[M+Na]^+$ of m/z 769 is caused by $^{O,2}A_4$ cross-ring fragmentation rather than by elimination of acetamide from an intrachain \mathbf{A} residue (*vide supra*).

3.4. MS^n of cross-ring fragments of m/z 668 $[{}^{0,2}A_4+Na]^+$ of reducing end **A** tetrasaccharides

The $^{0.2}A_4$ fragments of sodiated **ADDA**, **DADA**, and **DDAA** are observed in the MS² of the ion of m/z 769 [M+Na]⁺ as well as the ions of m/z 668 [M-101+Na]⁺ (see Fig. 4). The MS³ scan m/z 769 \rightarrow m/z 668 [$^{0.2}A_4$ +Na]⁺ \rightarrow products shows loss of water (-18 Da) and two molecules of formaldehyde (-60 Da), that is [$^{0.2}A_4$ -78+Na]⁺, and this process prevails when the next neighbour of the fragmented reducing end **A** residue is **D**, whereas the B₃ ion is preferred when the next neighbour is **A** (Fig. 6). This fragmentation behaviour is analogous to that of the $^{0.2}A_4$ fragments of reducing end **D** tetrasaccharides (cf. MS³ of the ion of m/z 710, Fig. 5).

The MS⁴ scan m/z 769 \rightarrow m/z 668 \rightarrow m/z 590 \rightarrow products for sodiated **DADA**, which is equivalent with $[^{2,4}A_4-18+Na]^+$, shows a major ion of m/z 387 $[B_2+Na]^+$ (Fig. 6d). The minor ions of m/z

Fig. 5. (a) MS³ scan m/z 769 [M+Na]⁺ → m/z 710 [$^{0.2}$ A₄+Na]⁺ → products for **AADD**. (CE_{MS2} 14; CE_{MS3} 30), (b) MS⁴ scan m/z 769 [M+Na]⁺ → m/z 710 [$^{0.2}$ A₄+Na]⁺ → m/z 710 [$^{0.2}$ A₄+Na]⁺ → products for **AADD** (CE_{MS2} 14; CE_{MS3} 14; CE_{MS3} 10), (c) MS³ scan m/z 769 [M+Na]⁺ → m/z 710 [$^{0.2}$ A₄+Na]⁺ → products for **ADAD** (CE_{MS2} 15; CE_{MS3} 11.5), and (d) **DAAD** (CE_{MS2} 15; CE_{MS3} 15).

429, 286, and 226 are assigned to $[^{2,4}A_3-18+Na]^+$, $[^{0,2}A_2-18+Na]^+$ and $[^{2,4}A_2-18+Na]^+$, respectively. Fig. S4 explains the correlation of fragment ions observed by the MS⁴ scan of m/z 769 \rightarrow m/z 668 \rightarrow m/z 590 \rightarrow products for sodiated **DADA**.

3.5. MS^n of the ion of m/z 608 $[^{2,4}A_4+Na]^+$ of reducing end A, and/or $[C_3+Na]^+$ of reducing end D, and/or $[Y_3+Na]^+$ of non-reducing end D tetrasaccharides

As discussed above (see Figs. 3 and 4), MS^2 yield trisaccharide fragments of m/z 608 [M-161+Na]⁺ which account for A_2D , that is C_3 ions of **AADD** and **ADAD** and Y_3 ions of **DADA** and **DDAA**, whereas they are isobaric C_3 and Y_3 ions of **DAA** and **AAD** from **DAAD**, respectively. MS^3 of the ion of m/z 608 must therefore yield cross-ring fragments that account for either a **D** or an **A** residue at the reducing end of these trisaccharide ions. In addition, $^{2.4}A_4$ crossring fragments of reducing end **A** tetramers must be considered.

Fig. 7 shows MS³ data of the ion of m/z 608 of **AADD**, **ADAD**, and **DAAD**. The reducing end **D** residue of the C₃ ion of **AADD** is confirmed by the major ion of m/z 549 [C₃–59+Na]⁺, accounting for the $^{0.2}$ A₃ cross-ring fragment (Fig. 7a). The corresponding $^{2.4}$ A₃ ion of m/z 489 appears with low abundance. C₂ and B₂ ions as well as a low abundant Y₂ ion of m/z 447, 429, and 405, respectively, are also detected. The $^{0.2}$ A₂ fragment ion of m/z 346 confirms the presence of the **A** residue at the non-reducing end which also gives a weak B₁ ion of m/z 226.

The C_3 ion of m/z 608 of **ADAD** contains an **A** residue at the reducing end. Loss of water gives the very abundant ion B_3 of m/z 590 (Fig. 7b). Low abundant ions of cross-ring cleavages are also

observed: m/z 507 for $^{0.2}A_3$ and m/z 346 for $^{0.2}A_2$. As the minor ion of m/z 489 $[C_3-119+Na]^+$ cannot be a cross-ring fragment of a **D** residue, and it must be formed by $^{0.2}A_3$ cross-ring fragmentation and water loss of the reducing end **A** residue of **ADA**. Similarly, since a C_2/Y_2 ion of the composition A_2 is not possible, those of m/z 447 and 429 must represent $^{2.4}A_3$ cross-ring fragments from the reducing end **A** residue plus loss of water, respectively. The major ion of m/z 387 is attributed to $[B_2+Na]^+$. The C_2/Y_2 , C_1/Y_1 , and B_1 fragment ions of m/z 405, 244, and 226, respectively, are also detected.

As confirmed by MS³ (Fig. 7c), the **DAAD** fragment ion of m/z 608 is composed of the isobaric C₃ and Y₃ ions of the composition \mathbf{DA}_2 , The relative abundance of the ion of m/z 549 [O,2 A₃ of Y₃+Na]⁺ is lower than that of m/z 507 [O,2 A₃ of C₃+Na]⁺. Considering that the major ion in the MS² of an oligosaccharide bearing a **D** residue at the reducing end results from O,2 A₃ cross-ring cleavage, but from water loss from a reducing end **A** residue, it is concluded that the **DAA** C₃ ion is the major and the **AAD** Y₃ ion is the minor component of the ion population of m/z 608 of sodiated **DAAD**. The ions of m/z 447 and 429 are consistent with the C₂/Y₂ ions of **A**₂ composition and the corresponding B₂ ion, respectively. The major ion of m/z 387 is the B₂ fragment of the C₃ ion. Assignment of the remaining fragment ions in the MS³ of the ion of m/z 608 of **DAAD** is straightforward in analogy with MS³ of **AADD** and **ADAD**.

Minor fragment ions of m/z 608 are also observed in the MS² of **ADDA**, **DADA**, and **DDAA** (see Fig. 4), accounting for $^{2.4}$ A₄ crossring fragments of the reducing end **A** residue of all three tetramers, but also for Y₃ ions of **DADA** and **DDAA** (Fig. 8). As **ADDA** does not contain a reducing or a non-reducing end **D** residue, the loss of a

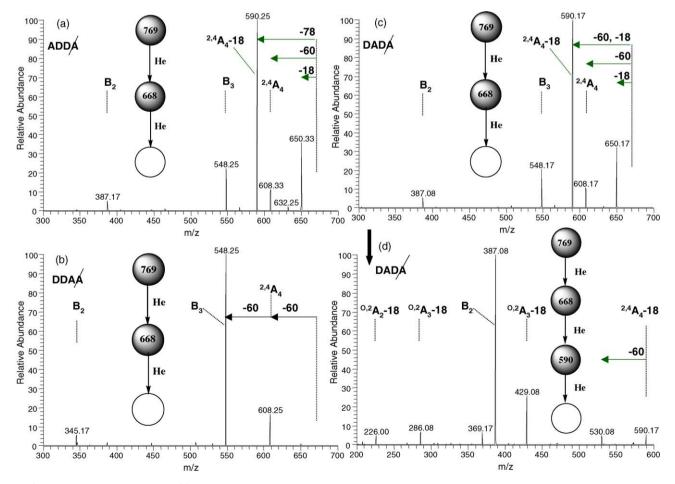


Fig. 6. MS³ scan m/z 769 [M+Na]⁺ $\rightarrow m/z$ 668 [$^{0.2}$ A₄+Na]⁺ \rightarrow products for (a) **ADDA** (CE_{MS2} 20; CE_{MS3} 12), (b) **DDAA** (CE_{MS2} 15; CE_{MS3} 15), (c) **DADA** (CE_{MS2} 15; CE_{MS3} 12). (d) MS4 scan m/z of 769 [M+Na]⁺ \rightarrow m/z 668 [$^{0.2}$ A₄+Na]⁺ \rightarrow m/z 590 [$^{0.2}$ A₄-78+Na]⁺ \rightarrow products for **DADA** (CE_{MS2} 15; CE_{MS3} 12; CE_{MS4} 12).

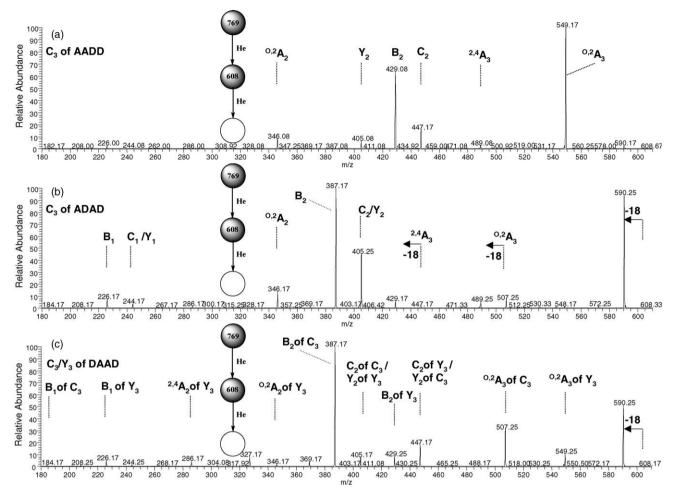


Fig. 7. MS³ scan m/z 769 [M+Na]⁺ $\rightarrow m/z$ 608 [C₃+Na]⁺ \rightarrow products for and/or [Y₃+Na]⁺, respectively, for (a) **AADD** (CE_{MS2} 14; CE_{MS3} 14), (b) **ADAD** (CE_{MS2} 15; CE_{MS3} 12), (c) **DAAD** (CE_{MS2} 15; CE_{MS3} 14).

neutral of 161 Da in MS² of **ADDA** (see Fig. 4) can only be due to $^{2.4}\text{A}_4$ cross-ring fragmentation which is confirmed by MS³ of m/z 608, showing the base $[^{2.4}\text{A}_4-18+\text{Na}]^+$ ion of m/z 590 and the B₃ ion of m/z 548 (Fig. 9a). The C₂ ion (**AD**) of m/z 405 and the B₂ (**AD**) ion of m/z 387 are also detected. The trace ion of m/z 346 (Fig. 9a, inset) is due to $^{0.2}\text{A}_2$ cross-ring cleavage, whereas the ion of m/z 345, accounting for a **D**₂ unit, is ambiguous. C₁ and B₁ ions of m/z 244 and 226 are observed with low abundances.

MS³ of the ion of m/z 608 of **DADA** and **DDAA** detects the ^{2,4}A₄ and Y₃ ions (Fig. 9b, c). The B₃ ion of m/z 548 is of lower abundance for **DADA** than **DDAA**, indicating a preference for B-type cleavage of the glycosidic bond of an **A** residue as compared with a **D** residue. Also, the ^{0,2}A₃ cross-ring fragment of m/z 507 of the Y₃ ion is less abundant in the MS³ of the ion of m/z 608 of **DADA** than that of **DDAA**.

3.6. MS^n of the ion of m/z 566 $[C_3+Na]^+$ of reducing end **A** and/or $[Y_3+Na]^+$ of non-reducing end **A** tetrasaccharides

Fragments of $\mathbf{D}_2\mathbf{A}$ composition, i.e. $[M-203+Na]^+$ ions of m/z 566 (see Figs. 3 and 4), are observed in the MS^2 of five of the six isomers accounting for C_3 ions of **DADA** and **DDAA**, Y_3 ions of **AADD** and **ADAD**, and the isobaric C_3 and Y_3 ions of **ADDA**, respectively.

MS³ of m/z 566 of **ADDA** confirms the presence of isobaric C₃ and Y₃ ions which are clearly distinguished by abundant ions of m/z 507 [$^{0.2}$ A₃ of **ADD**+Na]⁺ and the rather weak ion of m/z 465 [$^{0.2}$ A₃ of **DDA**+Na]⁺, as well as the B₂ ions of m/z 387 [B₂ of **ADD**+Na]⁺ and m/z 345 [B₂ of **DDA**+Na]⁺, respectively (Fig. 10a). The MS³ of

the ion of m/z 566 of **DADA** and **DDAA** are complimentary, showing the expected fragmentation of the C_3 ion with the **DAD** and **DDA** structures, with also the expected series of $^{O,2}A_3$, C_2 and B_2 ions, respectively (Fig. 10b, c).

Assignment of ions in the MS^3 of the ion of m/z 566 $[Y_3+Na]^+$ of **AADD** and **ADAD** is rather straightforward (Fig. 11). $^{0.2}A_3$ crossring cleavage of the reducing end **D** residue yields the major ion of m/z 507 in the MS^3 of both tetramers. The Y_3 ion **ADD** of **AADD** shows also the $^{0.2}A_2$ cross-ring fragment of m/z 346 with relatively high abundance. The minor ions of m/z 447 $[Y_3-119+Na]^+$ account for $^{2.4}A_3$ fragment ions. The remaining ions are assigned to the B_2 and C_2 ions. Other fragments appear as trace ions only and are of questionable significance.

3.7. Rules of fragmentation

Based on the analysis of the various types of cross-ring and glycosidic bond fragmentations, the following rules could be established:

Cross-ring cleavage:

- A reducing end **D** residue gives mainly the ^{O,2}A_n fragment ion [M-59+Na]⁺ whereas ^{2,4}A_n fragments [M-119+Na]⁺ are minor (Fig. 3).
- 2. A reducing end **A** residue preferentially gives $[M-18+Na]^+$. $^{0.2}A_n$ -type ions appear with lower abundances. The assignment of $^{2.4}A_n$ is ambiguous when there is a **D** residue located at the non-reducing end (Fig. 4).

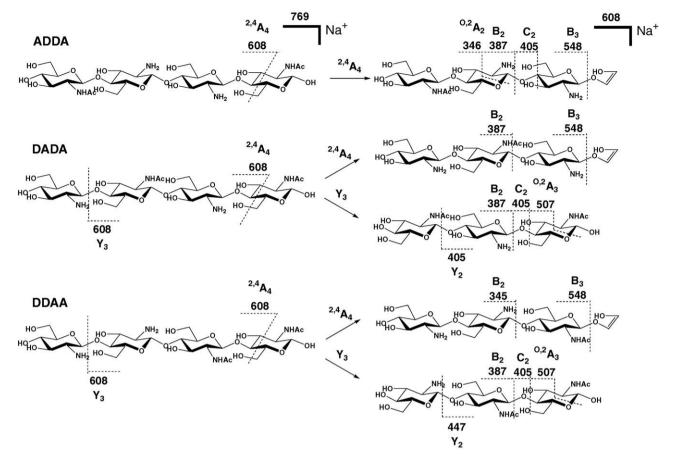


Fig. 8. MS³ fragments expected for m/z 769 [M+Na]⁺ $\rightarrow m/z$ 608 \rightarrow products for ADDA, DADA, and DDAA.

- 3. O.2 A_n fragment ions of a reducing end **A** residue are relatively more abundant when the next neighbour is **A** as compared to **D** (Fig. 4).
- 4. MS³ of $^{0.2}A_n$ and $^{2.4}A_n$ fragment ions yields an abundant B_{n-1} ion when the next neighbour is **A**, but further fragmentation by loss of water and formaldehyde occurs when the next neighbour is **D** (Figs. 5 and 9).
- X-type ions are minor, if detected at all. They are not diagnostic for distinguishing reducing end and non-reducing end D and A residues due to ambiguities in the assignment of isobaric fragment ions.

Glycosidic bond fragmentation:

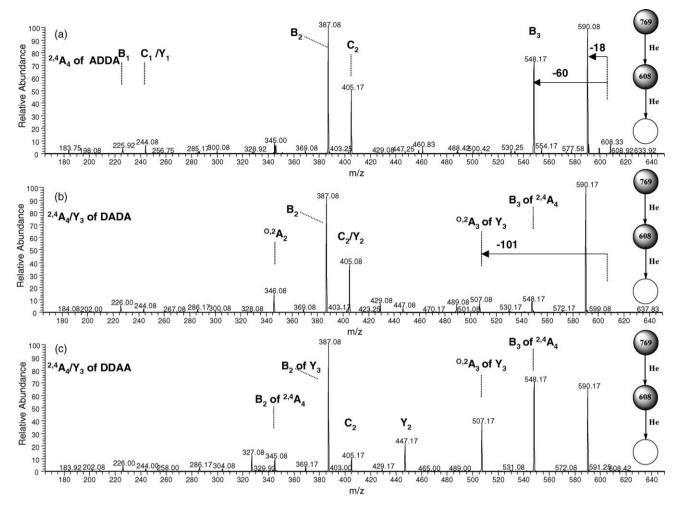
- The ion abundances for cleavage decrease generally in the order B>C>Y, with the exception of -D-O-D-, where C>B>Y (cf. Budnik et al., 2003).
- In MS², B-type fragmentation of glycosidic bonds are favoured for -A-O-A- and -A-O-D-, but disfavoured for-D-O-D- and -D-O-A.
- 8. Z-type fragment ions are detected at trace abundances, if at all.

Table 2 Relative abundances of fragment ions from CID glycosidic bond cleavages in ESI(+)- MS^n of $(\mathbf{D}_2\mathbf{A}_2)$ isomers.

Trisaccharide frag	gments	Disaccharide frag	Disaccharide fragments			
AADD	ADDA	AADD	ADDA			
$C_3 > B_3 \gg Y_3$	$B_3 > C_3/Y_3$	$B_2 \gg C_2 > Y_2$	$B_2 > C_2/Y_2$			
ADAD	DADA	ADAD	DADA			
$B_3 > C_3 \gg Y_3$	$B_3 > C_3 > Y_3$	$B_2 > C_2/Y_2$	$B_2 > C_2/Y_2$			
DAAD	DDAA	DAAD	DDAA			
$B_3 > C_3/Y_3$	$B_3 \gg C_3 > Y_3$	$B_2 > C_2/Y_2$	$B_2 \approx C_2 \gg Y_2$			

Table 2 and rules 7 and 8 summarize the relative abundances of the C, Y, and B type ions observed by MSⁿ of the six tetrasaccharides (Figs. 3, 4, 8 and 10).

Other two general observations:


- 9. Elimination of acetamide is insignificant.
- 10. An assignment of the trace fragment ions of $m/z \le 286$ to a non-reducing end **D** or **A** residue is ambiguous because of the occurrence of isobars arising from loss of ketene (Fig. S2).

It is known that strongly coordinating metal ions direct fragmentations of oligosaccharides. As has been described for A_2 and A_3 (Cancilla, Wong, Voss, & Lebrilla, 1999), cross-ring cleavages are charge-remote but glycosidic bond cleavages are charge-induced. The preferential cross-ring cleavages are therefore reasonably explained with a stronger coordination of the alkali metal ion to D bearing a free amino group, as compared with A bearing an acetamido group. But glycosidic bond cleavage at an A unit is facilitated by anchimeric assistance of the acetamido group, and this assistance is unfeasible for B-type cleavage of the glycosidic bond of a D residue (Fig. 12).

MSⁿ experiments were performed also with ions of m/z 650 [$^{2.4}$ A₄+Na]⁺ of reducing end **D** and [$^{0.2}$ A₄-18+Na]⁺ of reducing end **A** tetrasaccharides, as well as with ions of m/z 590 and 548 [$^{0.2}$ B₃+Na]⁺. The data are in agreement with the fragmentation rules, as discussed in the supplement.

3.8. Analysis of mixtures of unknown isomer composition

According to the fragmentation rules, it should be possible to gain at least partial sequence information of isomers $\mathbf{D}_n \mathbf{A}_m$ by \mathbf{MS}^n of $^{0.2}\mathbf{A}_-$, C/\mathbf{Y}_- , and \mathbf{B} -type ions. We have therefore investigated

Fig. 9. MS³ scan m/z 769 [M+Na]⁺ $\rightarrow m/z$ 608 [$^{2.4}$ A₄+Na]⁺ \rightarrow products and/or [Y₃+Na]⁺, respectively, for (a) **ADDA** (CE_{MS2} 20; CE_{MS3} 11), (b) **DADA** (CE_{MS2} 20; CE_{MS3} 12).

CHOs obtained by size exclusion chromatography of an enzymatic hydrolyzate of chitosan (cf. Bahrke et al., 2002). ESI(+)-MS of the sample reveals a complex mixture of oligomers and homologs (Fig. 13), from which the sodiated molecules of the pentasaccharide $\mathbf{D}_2\mathbf{A}_3$, two hexasaccharides, $\mathbf{D}_3\mathbf{A}_3$ and $\mathbf{D}_2\mathbf{A}_4$, and two heptasaccharides, $\mathbf{D}_4\mathbf{A}_3$ and $\mathbf{D}_3\mathbf{A}_4$,were selected for analysis.

3.9. MS^n of m/z 972 $[M+Na]^+$ ($\mathbf{D}_2\mathbf{A}_3$)

Permutation of the positions of two **D** and three **A** residues of pentasaccharide $\mathbf{D}_2\mathbf{A}_3$ gives ten isomers, i.e.

1. DAAAD 2. ADAAD 3. AADAD 4. AAADD 5. DDAAA 6. DADAA 7. DAADA 8. ADDAA 9. ADADA 10. AADDA

MS² of the [M+Na]⁺ ion of m/z 972 (Fig. 14) shows the base [M-18+Na]⁺ ion of m/z 954 and an $^{0,2}A_5$ fragment of m/z 871 [M-101+Na]⁺. Reducing end **D** isomers **1-4** are excluded because of the absence of a $^{0,2}A_5$ fragment ion of m/z 913 [M-59+Na]⁺ (rule 1). The $^{2,4}A_5$ fragments of m/z 811 [M-161+Na]⁺ of reducing end **A** residues are isobaric with Y₄ ions of isomers **5-7**. According to rules 2 and 6, both $^{2,4}A_5$ and Y₄ fragment ions are expected to be formed with low intensity. The complete absence of ions of m/z 650 [Y₃+Na]⁺ and 345 [B₂+Na]⁺ in MS² (Fig. 14, inset), though eventually expected to result with low intensity from **5** (**DDAAA**), suggests that this **5** is absent and hence the ion of m/z 811 is generated by $^{2,4}A_5$ cross-ring rather than by Y₄ glycosidic bond fragmentation. The relatively strong B₄ ion of m/z 751 [M-203+Na]⁺, together with the corresponding C_4 ion of m/z 769, is of the **D**₂A₂ composition. Isobaric Z₄ and Y₄ ions could be formed from isomers **4-6**, respec-

tively. According to rule 8, the Z_4 ion is insignificant, whereas Y_4 would give a minor contribution to the ion of m/z 769 (rule 6). The two B_3 ions of m/z 590 (\mathbf{DA}_2) and 548 ($\mathbf{D}_2\mathbf{A}$) indicate that both \mathbf{D} and \mathbf{A} occur as next neighbours of the reducing end \mathbf{A} . The MS^3 scan m/z 972 [M+Na]⁺ $\rightarrow m/z$ 769 [C_4+Na]⁺ \rightarrow products shows diagnostic cross-ring fragments of m/z 710 [$^{0.2}A_4+Na$ of (\mathbf{DA}_2)- \mathbf{D}]⁺ and m/z 668 [$^{0.2}A_4+Na$ of (\mathbf{DA}_2)- \mathbf{A}]⁺ as well as two B_3 ions of m/z 590 and 548, and three B_2 ions of m/z 429, 387, and 345, respectively, accounting for the six reducing end \mathbf{A} isomers $\mathbf{5}$ – $\mathbf{10}$ of ($\mathbf{D}_2\mathbf{A}_2$)- \mathbf{A} (Fig. 15). Since isomer $\mathbf{5}$ is unlikely, the ion of m/z 345 is assigned to the B_2 ion of Y_4 of isomer $\mathbf{8}$. In summary, pentasaccharide $\mathbf{D}_2\mathbf{A}_3$ is a mixture of isomers $\mathbf{6}$ – $\mathbf{10}$ with those containing an \mathbf{A} residue in the second position, i.e. $\mathbf{6}$ and $\mathbf{8}$, as major components.

Other minor cross-ring fragments are ions of m/z 507 [$^{0.2}$ A₃+Na+ of C₄ (**DA**)-**DA**] and 286 [$^{2.4}$ A₂ of C₄ **AD**-(**DA**)]. The ions of m/z 912 [M-60+Na]⁺ and 834 [M-120-18+Na]⁺ are obviously generated by non-diagnostic X-type fragmentations of a non-reducing end **D** or **A** residue (cf. Table 1).

3.10. MS^n of m/z 1133 $[M+Na]^+$ ($\mathbf{D}_3\mathbf{A}_3$)

The 20 possible isomers of $\mathbf{D}_3\mathbf{A}_3$ are

1. DDAAAD 2. DADAAD 3. DAADAD 4. DAAADD 5. ADDAAD 6. ADADAD 7 ADAADD 8 AADDAD 9. AADADD 10. AAADDD 15. DADADA 11. DDDAAA 12. DDADAA 13. DDAADA 14. DADDAA 16 DAADDA 17. ADADDA 18. AADDDA 19. ADDDAA 20 ADDADA

Isomers **1–16** are excluded because the $^{0,2}A_6$ ion of m/z 1074 $[M-59+Na]^+$ and the $^{2,4}A_6/Y_5$ ion of m/z 972 $[M-161+Na]^+$ are

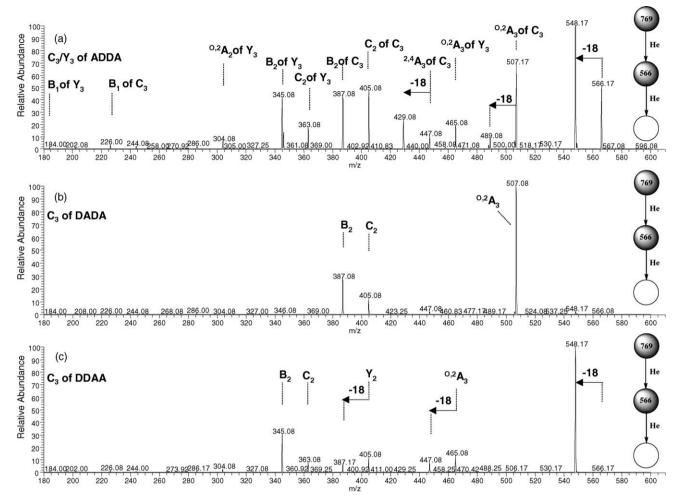


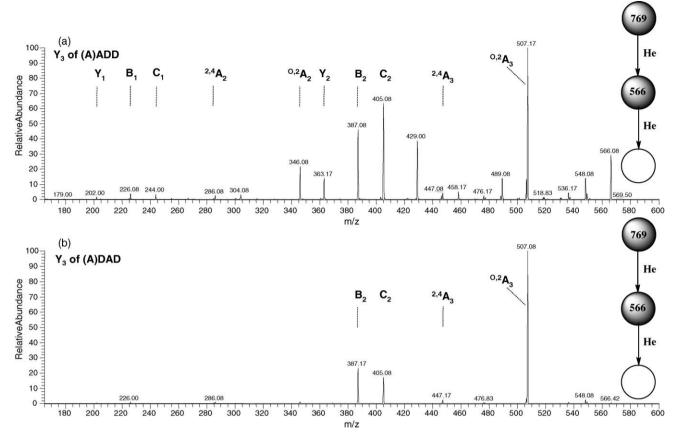
Fig. 10. MS³ scan m/z 769 [M+Na]⁺ $\rightarrow m/z$ 566 [C3+Na]⁺ \rightarrow products for (a) ADDA (CE_{MS2} 20; CE_{MS3} 10), (b) DADA (CE_{MS2} 20; CE_{MS3} 12), (c) DDAA (CE_{MS2} 15; CE_{MS3} 12).

absent in the MS² of the [M+Na]⁺ ion of m/z 1133 (Fig. S12). MS³ scan [M+Na]⁺ $\rightarrow m/z$ 930 [C₅/Y₅+Na]⁺ \rightarrow products gives, besides ^{O,2}A₅ cross-ring fragments of reducing end **D** (minor) and **A** (major), two B₄ ions of m/z 751 (**D**₂A₂) and 709 (**D**₃A), consistent with isomers **17–20** (Fig. S13). The occurrence of only B₃ ion of m/z 548 (**D**₂A) and one B₂ ion of m/z 387 (**DA**), and the absence of B- type fragments **DA**₂ (calcd. m/z 590) and **A**₂ (calcd. m/z 429) excludes isomers **17** and **18**. In summary, (**D**₃A₃) is a mixture of isomers **19** (major) and **20** (minor).

3.11. MS^n of the $[M+Na]^+$ ion of m/z 1175 ($\mathbf{D}_2\mathbf{A}_4$)

The 15 possible isomers of $\mathbf{D}_2\mathbf{A}_4$ are

1. AAAADD 2. AAADAD 3. AADAAD 4. ADAAAD 5. DAAAAD
6. AAADDA 7. AADADA 8. ADAADA 9. DAAADA 10. AADDAA
11. ADDAAA 12. ADADAA 13. DAADAA 14. DADAAA 15. DDAAAA


Isomers **1–5** are excluded because an $^{0.2}A_6$ ion of m/z 1116 [M–59+Na]⁺ is absent in MS² of the [M+Na]⁺ion of m/z 1175 (Fig. S14). The reducing end **A** is confirmed by the [M–18+Na]⁺ base ion of m/z 1157, by the $^{0.2}A_6$ cross-ring fragment of the [M–101+Na]⁺ion of m/z 1074, and the corresponding, very weak isobaric $^{2.4}A_6/Y_5$ ions of [M–161+Na]⁺ of m/z 1014. B₄ ions of m/z 793 (minor) and 751 (major) account, together with the corresponding C_4/Y_4 ions of m/z 769 and 811, for partial sequences of isomers **6–15**. Isomers having **D** in the second position, i.e. **6–9**, are excluded because an $^{0.2}A_5$ ion (calcd. m/z 913 [C_5 –59+Na]⁺) is absent in MS³ scan m/z 1175 (**D**₂**A**₄) \rightarrow m/z 972 [C_5/Y_5 (**D**₂**A**₃)+Na]⁺ \rightarrow products (Fig. S15). The base [M–18+Na]⁺

ion of m/z 954 and the $^{0,2}A_5$ cross-ring fragment $[C_5-101+Na]^+$ ion of m/z 871 confirm the reducing-end -A-A sequence. Isomer 15 is excluded, as fragments of A_3 (calcd. m/z 650 $[Y_3+Na]^+$) and D_2 (calcd. m/z 363 [C₂+Na]⁺) are absent. The strong B₄ ion of m/z 751 $(\mathbf{D}_2 \mathbf{A}_2)$ and the corresponding C_4/Y_4 ion of m/z 769 account for partial sequences of isomers **10–14**. The homologous trace ions of m/z811 and 793 are consistent with $[{}^{0,2}A_5+N_a]^+$ and $[{}^{0,2}A_5-18+N_a]^+$ of $[C_5+Na]^+$ of isomers **10–14**. The MS⁴ scan m/z 1175 (**D**₂**A**₄) $\to m/z$ $972 \rightarrow m/z$ 769 $[C_4+Na]^+$ $(\mathbf{D}_2\mathbf{A}_2) \rightarrow \text{products shows unexpectedly}$ abundant, non-diagnostic $^{0,2}X_3$ and $^{2,4}X_3$ fragment ions of m/z $709 [C_4-60+Na]^+$ and $649 [C_4-120+Na]^+$ (Fig. S16). The absence of cross-ring fragment ions of a reducing end **D** of m/z 710 [$^{0,2}A_4+Na$]⁺ and $650 [^{2,4}A_4+Na]^+$ excludes isomers **10**, **12**, and **13**. In summary, MS^2 excludes **1–5**, MS^3 excludes **6–9** and **15** and MS^4 excludes **10**, 12, and 13. The remaining two isomers are 11 (ADDAAA) and 14 (DADAAA).

3.12. MS^n of the $[M+Na]^+$ ion of m/z 1294 ($\mathbf{D}_4\mathbf{A}_3$)

The 35 possible isomers of ($\mathbf{D}_4\mathbf{A}_3$) are 5. ADAADDD 1. AAADDDD 2. AADADDD 3. AADDADD 4. AADDDAD 6 ADADADD 7 ADADDAD 8 ADDAADD 9 ADDADAD 10 ADDDAAD 11. DAAADDD 12. DAADADD 13. DAADDAD 14. DADAADD 15. DADADAD 16. DADDAAD 17. DDAAADD 18. DDAADAD 19. DDADAAD 21. AADDDDA 22. ADADDDA 23. ADDADDA 24. ADDDADA 25. DAADDDA 26. DADADDA 27. DADDADA 28. DDAADDA 29. DDDAADA 30. DDADADA 31. DADDDAA 32. DDADDAA 33. ADDDDAA 34. DDDADAA 35. DDDDAAA

MS² of the [M+Na]⁺ ion of m/z 1294 excludes **1–20** by the absence an 0,2 A₄ ion of m/z 1235 [M–59+Na]⁺ of a reducing end

Fig. 11. MS^3 scan m/z 769 $[M+Na]^+ \rightarrow m/z$ 566 $[Y_3+Na]^+ \rightarrow$ products for (a) **AADD** (CE_{MS2} 15; CE_{MS3} 10), (b) **DADA** (CE_{MS2} 30; CE_{MS3} 12).

D heptasacharide (Fig. S17). The base $[M-18+Na]^+$ ion of m/z 1276 and the $^{0.2}A_4$ $[M-101+Na]^+$ fragments of m/z 1193 are diagnostic for reducing end **A** isomers. The corresponding C_6/Y_6 and B_6 ions of m/z 1091 and 1073, respectively, are of the composition ($\mathbf{D_4A_2}$). The MS³ scan m/z 1294 \rightarrow m/z 1091 \rightarrow products shows the base $[C_6-18+Na]^+$ ion of m/z 1073 and cross-ring fragments of m/z 1032 $[C_6-59+Na]^+$ and 972 $[C_6-119+Na]^+$ of reducing-end **D**, as well as of m/z 990 $[C_6-101+Na]^+$ and 930 $[C_6-161+Na]^+$ of reducing end **A** residues, respectively (Fig. S18). According to rules 1 and 2,

isomers **21–30**, containing **D** in the second position, are minor components. Otherwise, the MS 3 shows a series of rather low abundant C/Y- and B-type ions of m/z 930 and 912 (D $_3$ A $_2$), 888 and 870 (D $_4$ A), 769 (trace) and 751 (D $_2$ A $_2$), 727 and 709 (D $_3$ A), 608 (trace) and 590 (DA $_2$), 566 (trace) and 548 (D $_2$ A), and 524 and 506 (trace) (D $_3$). In conclusion, none of the 15 isomers **21–35** can be excluded, though **31–35** having a reducing end partial sequence –**A–A** are obviously major components. Further analysis was not possible due to the low abundance of the fragment ions.

Fig. 12. Anchimeric assistance in B-type fragmentation of A residues.

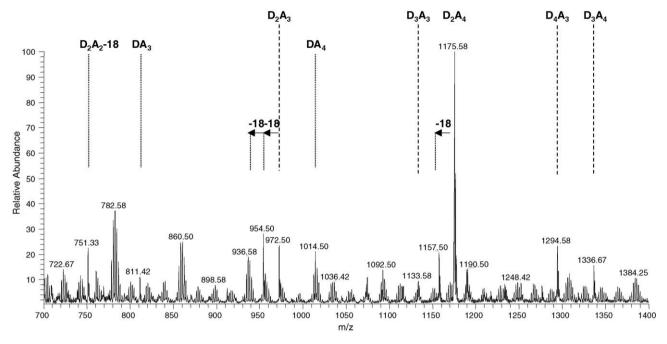
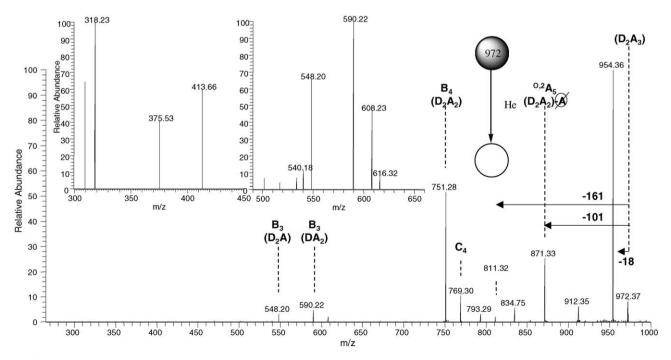
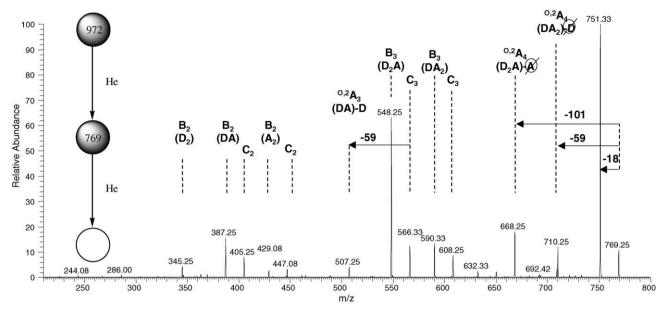


Fig. 13. ESI(+)-MS of a mixture of CHOs prepared by enzymatic degradation of chitosan.


3.13. MS^n of the $[M+Na]^+$ of m/z 1336 ($\mathbf{D}_3\mathbf{A}_4$)

As for $(\mathbf{D}_4\mathbf{A}_3)$, 35 isomers are possible for the homologous heptasaccharide $(\mathbf{D}_3\mathbf{A}_4)$:


2. AAADADD 5. AADADAD 1. AAAADDD 3. AAADDAD 4. AADAADD 6. AADDAAD 7. ADAAADD 8. ADAADAD 9. ADADAAD 10. ADDAAAD 11. DAAAADD 12. DAAADAD 13. DAADAAD 14. DADAAAD 15. DDAAAAD 16. AAADDDA 17. ADDDAAA 18. DAAADDA 19. AADADDA 20. ADAADDA 21. DDDAAAA 22. DDADAAA 23. DADDAAA 24. DAADADA 25. DAADDAA 26. AADDDAA 27. AADDADA 28. ADADDAA 29. ADADADA 31. DADADAA 32. ADDADAA 33. DDAAADA 34. DADAADA 35. ADDAADA

A $[M-59+Na]^+$ fragment of m/z 1277 is absent in the MS² of the sodiated molecule of m/z 1336, thus excluding the 15 reducing-end

D isomers (Fig. S19). The $[M-101+Na]^+$ ion of m/z 1235 is the $^{0.2}A_7$ cross-ring fragment of reducing end **A**. The $^{2.4}A_7$ $[M-161+Na]^+$ ion of m/z 1175 may contain also minor contributions from the isobaric Y_6 , formed by loss of **D** from a non-reducing end. The C_6/Y_6 ion of m/z 1133 has the composition ($\mathbf{D}_3\mathbf{A}_3$). The rather weak B_5 ion of m/z 912 ($\mathbf{D}_3\mathbf{A}_2$) is consistent with isomers having a reducing end $-\mathbf{A}-\mathbf{A}$ sequence. The corresponding B_5 ion of the composition ($\mathbf{D}_2\mathbf{A}_3$), with calcd. m/z 954, is not detected. The MS^3 scan m/z 1336 $[M+Na]^+ \rightarrow m/z$ 1133 \rightarrow products shows cross-ring fragments of both, reducing end \mathbf{D} of m/z 1074 (weak) as well as \mathbf{A} residues (Fig. S20). The appearance of two B_5 ions of m/z 954 ($\mathbf{D}_2\mathbf{A}_3$) and 912 ($\mathbf{D}_3\mathbf{A}_2$), but only one B_4 ion of m/z 751 ($\mathbf{D}_2\mathbf{A}_2$), and only one

Fig. 14. MS^2 of the $[M+Na]^+$ ion of m/z 972 for $(\mathbf{D}_2\mathbf{A}_3)$ (CE 14.5). Inset: expansion in the m/z 300–450 and m/z 490–660 ranges, showing the absence of ions of m/z 650, 632 (\mathbf{A}_3) , 363, and 345 (\mathbf{D}_2) .

Fig. 15. MS³ scan m/z 972 [M+Na]⁺ $\rightarrow m/z$ 769 [$^{0.2}A_5$ +Na]⁺ \rightarrow products for ($\mathbf{D}_2\mathbf{A}_2$)-A (CE_{MS2} 13; CE_{MS3} 13).

 B_3 ion of m/z 548 ($\mathbf{D}_2\mathbf{A}$) excludes isomers $\mathbf{16}$ – $\mathbf{29}$, because either B_4 or B_3 or both are mismatching, as Table 3 explains. For example, isomer $\mathbf{16}$ could give C_6 and Y_6 of the composition ($\mathbf{D}_3\mathbf{A}_3$) which could fragment into two B_5 ($\mathbf{D}_2\mathbf{A}_3$) and ($\mathbf{D}_3\mathbf{A}_2$) and into B_4 ($\mathbf{D}_2\mathbf{A}_2$) of Y_6 but not of C_6 , and not into B_3 ($\mathbf{D}_2\mathbf{A}$). Isomer $\mathbf{17}$ is excluded because C_6 must give B_4 ($\mathbf{D}_3\mathbf{A}$) which is absent. All C_6 and some of the Y_6 ions of the six isomers $\mathbf{30}$ – $\mathbf{35}$ fragment into matching B_4 and B_3 ions. Those having a reducing end – \mathbf{D} – \mathbf{A} sequence, i.e. i.e. $\mathbf{33}$ – $\mathbf{35}$, are minor components.

4. Conclusions

As described here for the six isomers of $\mathbf{D}_2\mathbf{A}_2$ composition, collision induced dissociation via ESI(+)-MSⁿ (n = 2–4) of sodiated molecules of aminoglucan oligosaccharides $\mathbf{D}_m\mathbf{A}_n$ occurs via characteristic $^{\mathrm{O},2}\mathrm{A}_n$ cross-ring and C/Y- as well as B-Type glycosidic bond cleavages. The reducing end sugar and its next neighbour

is easily identified, allowing for the partial sequencing of components of mixtures of CHOs. Several isomers not present in a mixture can be reliably excluded, as shown with five examples of penta-, hexa-, and heptasaccharides where the prevailing reducing end sequence is -A-A. The results are similar to those published earlier for tagged hetero-CHOs (Bahrke et al., 2002; Haebel et al., 2007). As compared with conventional MS and NMR methods, the ESI(+)-MSⁿ method described herein has the advantage of being less invasive and time consuming since derivatizations, such as reducing end tagging and N-deuterioacetylation, are not required. The possibility of a sensitive, rapid, and direct ESI(+)-MSⁿ analysis of hetero-CHOs is particularly attractive for analysis of non-covalent protein-ligand complexes where any separation and chemical derivatization step would disturb the equilibrium between bound and free components. Applications of ESI(+)-MSⁿ are envisaged for the studies of the mechanisms of chitinolytic enzymes and the binding selectivity of chitolectins.

Table 3 Analysis of B-type ions generated in the ESI(+)-MS³ scan m/z 1336 ($\mathbf{D}_3\mathbf{A}_4$) $\rightarrow m/z$ 1133 ($\mathbf{D}_3\mathbf{A}_3$) \rightarrow products. Favoured fragmentation processes are indicated by (+) and disfavoured by (-).

m/z 1336 ($\mathbf{D}_3\mathbf{A}_4$)	m/z 1133 D ₃ A ₃		m/z 751 $\mathbf{D}_2\mathbf{A}_2$		m/z 548 $\mathbf{D}_2\mathbf{A}$	
Isomer no.	$\overline{C_6}$	Y ₆	B ₄ of C ₆	B ₄ of Y ₆	B ₃ of C ₆	B ₃ of Y ₆
16. AAADDDA	AAADDD (-)	AADDDA (+)		AADD (-)		
17. ADDDAAA	ADDDAA (+)	DDDAAA (+)			ADD	
18. DAAADDA	$\mathbf{DAAADD}(-)$			DAA		
19. AADADDA	$\mathbf{AADADD}\left(-\right)$	ADADDA (+)		ADAD(-)	AAD	
20. ADAADDA	ADAADD(-)	DAADDA (+)		$\mathbf{DAAD}\left(-\right)$		
21. DDDAAAA	DDDAAA (+)			DDD		
22. DDADAAA	DDADAA (+)			DDA (+)		
23. DADDAAA	DADDAA (+)			DAD (-)		
24. DAADADA	$\mathbf{DAADAD}(-)$		$\mathbf{DAAD}(-)$	DAA		
25. DAADDAA	DAADDA (+)		$\mathbf{DAAD}(-)$	DAA		
26. AADDDAA	AADDDA (+)	ADDDAA (+)	AADD(-)		AAD	ADD(-)
27. AADDADA	AADDAD(-)	ADDADA (+)	AADD(-)	ADDA (+)	AAD	ADD(-)
28. ADADDAA	ADADDA (+)	DADDAA (+)	ADAD(-)		ADA	
29. ADADADA	ADADAD (-)	DADADA (+)	ADAD(-)	DADA (+)	ADA	$\mathbf{DAD}\left(-\right)$
30. DDAADAA	DDAADA (+)		DDAA (+)	DDA (+)		
31. DADADAA	DADADA (+)		DADA (+)	$\mathbf{DAD}\left(-\right)$		
32. ADDADAA	ADDADA (+)	DDADAA (+)	ADDA (+)		ADD	
33. DDAAADA	$\mathbf{DDAAAD}(-)$		DDAA (+)	DDA (+)		
34. DADAADA	DADAAD (-)		DADA (+)	DAD (-)		
35. ADDAADA	ADDAAD (-)	DDAADA (+)	ADDA (+)	DDAA (+)	ADD	DDA (+)

Acknowledgements

This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP). MGP is especially grateful to FAPESP for a visiting research scholarship (08/01663-5).

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.carbpol.2010.04.041.

References

- Bahrke, S. (2007). Mass spectrometric analysis of chitooligosaccharides and their interaction with proteins. PhD Thesis, University of Potsdam. URL: http://opus.kobv.de/ubp/volltexte/2008/2017/.
- Bahrke, S., Einarsson, J. M., Gislason, J., Haebel, S., Letzel, M. C., Peter-Katalinić, J., et al. (2002). Sequence analysis of chitooligosaccharides by matrix-assisted laser desorption ionization postsource decay mass spectrometry. *Biomacromolecules*, 3, 696–704.
- Bakkers, J., Semino, C. E., Stroband, H., Kijne, J. W., Robbins, P. W., & Spaink, H. P. (1997). An important developmental role for oligosaccharides during early embryogenesis of cyprinid fish. Proceedings of the National Academy of Sciences of the United States of America, 94, 7982–7986.
- Bosso, C., & Domard, A. (1992). Characterization of glucosamine and *N*-acetylglucosamine oligomers by fast atom bombardment mass spectrometry. *Organic Mass Spectrometry*, 27, 799–806.
- Budnik, B. A., Haselmann, K. F., Elkin, Y. N., Gorbach, V. I., & Zubarev, R. A. (2003). Applications of electron-ion dissociation reactions for analysis of polycationic chitooligosaccharides in Fourier transform mass spectrometry. *Analytical Chemistry*, 75, 5994–6001.
- Budnik, B. A., Lee, R. S., & Steen, J. A. J. (2006). Global methods for protein glycosylation analysis by mass spectrometry. *Biochimica et Biophysica Acta*, 1764, 1870–1880
- Cancilla, M. T., Wong, A. W., Voss, L. R., & Lebrilla, C. B. (1999). Fragmentation reactions in the mass spectrometry analysis of neutral oligosaccharides. *Analytical Chemistry*, 71, 3206–3218.
- Cederkvist, F., Zamfir, A. D., Bahrke, S., Eijsink, V. G. H., Sørlie, M., Peter-Katalinić, J., et al. (2006). Identification of a high-affinity-binding oligosaccharide by (+) nanoelectrospray quadrupole time-of-flight tandem mass spectrometry of a noncovalent enzyme-ligand complex. Angewandte Chemie-International Edition, 45 2429–2434
- Cederkvist, F. H., Parmer, M. P., Varum, K. M., Eijsink, V. G. H., & Sørlie, M. (2008). Inhibition of a family 18 chitinase by chitooligosaccharides. *Carbohydrate Polymers*, 74, 41–49.
- Domon, B., & Costello, C. E. (1988). A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. *Glycoconjugate Journal*, 5, 397–409
- dos Santos, A. L. W., El Gueddari, N. E., Trombotto, S., & Moerschbacher, B. M. (2008). Partially acetylated chitosan oligo- and polymers induce an oxidative burst in suspension cultured cells of the Gymnosperm Araucaria angustifolia. Biomacromolecules, 9, 3411–3415.
- Einarsson, J. M., Gislason, J., Peter, M. & Bahrke, S. (2003). Pharmaceutical composition comprising chito-oligomers. WO 03/026677 (Primex Ehf., Iceland), 30 pp.
- Fernandez, L. E. M. (2007). Introduction to ion trap mass spectrometry: Application to the structural characterization of plant oligosaccharides. *Carbohydrate Polymers*, 68, 797–807.
- Germer, A., Muegge, C., Peter, M. G., Rottmann, A., & Kleinpeter, E. (2003). Solutionand bound-state conformational study of N,N',N''-triacetyl chitotriose and other analogous potential inhibitors of hevamine: Application of trNOESY and STD NMR spectroscopy. Chemistry: A European Journal, 9, 1964–1973.
- Haebel, S., Bahrke, S., & Peter, M. G. (2007). Quantitative sequencing of complex mixtures of heterochitooligosaccharides by vMALDI-linear ion trap mass spectrometry. *Analytical Chemistry*, 79, 5557–5566.

- Houston, D. R., Shiomi, K., Arai, N., Omura, S., Peter, M. G., Turberg, A., et al. (2002). High-resolution structures of a chitinase complexed with natural product cyclopentapeptide inhibitors: Mimicry of carbohydrate substrate. *Proceedings* of the National Academy of Sciences of the United States of America, 99, 9127– 9132.
- Issaree, A. (2008). Synthesis of hetero-chitooligosaccharides. PhD Thesis, University of Potsdam. URL: http://opus.kobv.de/ubp/volltexte/2008/1706/.
- Kim, S. K., & Rajapakse, N. (2005). Enzymatic production and biological activities of chitosan oligosaccharides (COS): A review. Carbohydrate Polymers, 62, 357– 368
- Mathesius, U. (2003). Conservation and divergence of signalling pathways between roots and soil microbes—The *Rhizobium*-legume symbiosis compared to the development of lateral roots, mycorrhizal interactions and nematode-induced galls. *Plant and Soil*, 255, 105–119.
- Peter, M. G. (2002a). Chitin and chitosan from fungi. In A. Steinbüchel (Ed.), *Biopolymers* (pp. 123–157). Weinheim: Wiley-VCH.
- Peter, M. G. (2002b). Chitin and chitosan from animal sources. In A. Steinbüchel (Ed.), Biopolymers (pp. 481–574). Weinheim: Wiley-VCH.
- Peter, M. G., & Eberlin, M. N. (in press). Applications of mass spectrometry to analysis of structure and bioactivity of chitooligosaccharides. In S.-K. Kim (Ed.), Chitin, chitosan, oligosaccharides and their derivatives. Boca Raton: CRC Press, pp. 127–148
- Price, N. P. J. (1999). Carbohydrate determinants of *Rhizobium*-legume symbioses. *Carbohydrate Research*, 317, 1–9.
- Semino, C. E., & Allende, M. L. (2000). Chitin oligosaccharides as candidate patterning agents in zebrafish embryogenesis. *International Journal of Developmental Biology*, 44, 183–193.
- Singh, S., Gallagher, R., Derrick, P. J., & Crout, D. H. G. (1995). Glycosidase-catalyzed oligosaccharide synthesis: Preparation of the *N*-acetylchito-oligosaccharides penta-*N*-acetylchitopentaose and hexa-*N*-acetylchitohexaose using the β-N-acetylchexosaminidase of Aspergillus oryzae. Tetrahedron Asymmetry, 6, 2803–2810.
- Spaink, H. P. (2000). Root nodulation and infection factors produced by rhizobial bacteria. *Annual Review of Microbiology*, 54, 257–288.
- Trombotto, S., Ladaviere, C., Delolme, F., & Domard, A. (2008). Chemical preparation and structural characterization of a homogeneous series of chitin/chitosan oligomers. *Biomacromolecules*, 9, 1731–1738.
- Vaaje-Kolstad, G., Houston, D. R., Rao, F. V., Peter, M. G., Synstad, B., van Aalten, D. M. F., et al. (2004). Structure of the D142N mutant of the family 18 chitinase ChiB from Serratia marcescens and its complex with allosamidin. Biochimica et Biophysica Acta: Proteins and Proteomics, 1696, 103–111.
- Vaaje-Kolstad, G., Vasella, A., Peter, M. G., Netter, C., Houston, D. R., Westereng, B., et al. (2004). Interactions of a family 18 chitinase with the designed inhibitor HM508 and its degradation product, chitobiono-\u00f3-lactone. Journal of Biological Chemistry. 279. 3612–3619.
- van Aalten, D. M. F., Komander, D., Synstad, B., Gaseidnes, S., Peter, M. G., & Eijsink, V. G. H. (2001). Structural insights into the catalytic mechanism of a family 18 exo-chitinase. *Proceedings of the National Academy of Sciences of the United States of America*, 98, 8979–8984.
- Van der Drift, K. M. G. M., Olsthoorn, M. M. A., Brull, L. P., Blok-Tip, L., & Thomas-Oates, J. E. (1998). Mass spectrometric analysis of lipo-chitin oligosaccharides. Signal molecules mediating the host-specific legume-Rhizobium symbiosis. Mass Spectrometry Reviews, 17, 75–95.
- Vander, P., Vårum, K. M., Domard, A., El Gueddari, N. E., & Moerschbacher, B. M. (1998). Comparison of the ability of partially N-acetylated chitosans and chitooligosaccharides to elicit resistance reactions in wheat leaves. Plant Physiology, 118, 1353–1359.
- Vårum, K. M., Anthonsen, M. W., Grasdalen, H., & Smidsrød, O. (1991a). Determination of degree of N-acetylation and the distribution of N-acetyl groups in partially N-deacetylated chitins (chitosans) by high field NMR spectroscopy. Carbohydrate Research, 211, 17–23.
- Vårum, K. M., Anthonsen, M. W., Grasdalen, H., & Smidsrød, O. (1991b). ¹³C NMR studies of the acetylation sequences in partially N-deacetylated chitins (chitosans). Carbohydrate Research, 217, 19–27.
- Vijayakrishnan, B. (2008). Solution and solid phase synthesis of N,N'-diacetyl chitotetraoses. PhD Thesis, University of Potsdam. URL: http://opus.kobv.de/ ubp/volltexte/2008/1883/.
- Wolff, J. J., Amster, I. J., Chi, L. L., & Linhardt, R. J. (2007). Electron detachment dissociation of glycosaminoglycan tetrasaccharides. *Journal of the American Society for Mass Spectrometry*, 18, 234–244.
- Zhang, S., Van Pelt, C. K., & Henion, J. D. (2003). Automated chip-based nanoelectrospray-mass spectrometry for rapid identification of proteins separated by two-dimensional gel electrophoresis. *Electrophoresis*, 24, 3620–3632.